5.0 Intelligent Software Agents

Introduction and Definition

The notion of software agents has been with us for a long time. Certainly since the forma-
tive years of artificial intelligence, designers have flirted with the notion computers might one
day have a degree of apparent independence that would warrant their being called an agent of
the user. But imbuing a machine with the attributes of an agent has been difficult to achieve. Not
until processor power began to exceed appreciably that needed by the application at hand, have
resources been available locally to give the user this type of support. Now that has changed.
With evermore affordable processing power available at the user’s first point of interaction to
this new distributed computing world, there is the luxury of giving the machine attributes that,
to the user, seem autonomous and intelligent. Whether they are either, of course, is in the eye of
the beholder. Semantically, an agent is simply one authorized to work on behalf of or as a
representative of another. In computer science research, one expects an “intelligent” software
agent to use reasoning and persistence in performing its assigned task. Other, more human-like
attributes such as trust are more controversial.

The lack of a precise definition of a software agent, unfortunately, gives the developer and
marketer wide latitude in just how much or how little functionality is present. At their best,
software agents are capable of representing a user or owner in the accomplishment of specified
tasks without his or her having to prescribe or even be aware of how it is to be done. That degree
of detachment has some influence on whether the user considers the agent intelligent or not.
The more computer-aware the user, the more reasoning power and autonomy the agent must
have to be termed intelligent.

In the development of agents there may be a propensity to ascribe human attributes to a
program as its functionality increases. Because computers are the first machines that can take
on tasking through abstract, human-compatible language, there is some reason for this
tendency. But care must be given in not misleading users as to the reasoning power and adapt-
ability software programs like agents actually have. It is doubtful, however, enough precision
will emerge in describing such capabilities, so imputing functionality not actually present will
be an ongoing problem. Because of this difficulty, the term agent has mixed acceptance by
many experts. That reticence will not likely prevent it from being more popularized.

5.1 Principal Motivations

Why are software agents important in the evolution of computing? Listed in Table Il are
some of the reasons why agents will be of increasing importance in dealing with a complex
world of distributed information and resources the normal user will find confusing and threat-
ening.

38



Table Il Motivations for the Use of Software Agents

* The quantity of information will be too vast and its quality too uneven for most
humans to suffer through.

* The locations of desired information are too broad and nonintuitive.

+An increased "flatness" (lack of hierarchy) in the world of sources and sinks for
information makes dealing with it less understandable. This gets emphasized in
future peer-to-peer systems.

+Data and database heterogeneity demand a variety of translators.
+ Stored media will have increasing dimensionality in various formats.
+ The notion of delegation, broadly defined, will become more available.

* A broadly accepted commercial infrastructure for on-line information will provide
a more consistent interface.

* The need to hide complexity.
* The need for new programming models for a distributed computing environment.
+To need for improved human-computer interaction.

5.2 Important Counter-Pressures

Even though the above motivations seem to make agents inevitable, there are near term
obstacles. Some are due to the difficulty of the technology itself while some are due to the
difficulty in vendors or users being able or wanting to organize themselves.

Table 1V Obstacles in the Development and Use of Software Agents

* A perception that agents pose a risk as they masquerade an owner's malintent.
*The lack of a formal framework for a trusted agent. Will it perform as specified?

+"Training" agents is difficult. Can they be trained to do only prescribed tasks in a
remote setting the user may not know or understand?

»The lack of a common language - Too many conventions, not enough
translators (scripting and interpreter languages are the most favored at
present).

*The absence of commonly accepted models of reasoning or negotiating.

5.3 Functionalities, Types, and Models

Agents are clearly enjoying wide discussion inuker communityGiven that and the
above background, it is perhaps best to begin a discussion of agents using some functional
examples. If the popularity of the concept continues, there will be countless versions of them,
but here only four will be considered:

* Advisory agents - Those agents able to monitor a situation and give feedback with
or without recommendations. Generally, application-specific. Monitoring, at some
level of sophistication or abstraction, should be an attribute of all agents.

39



* Personal assistants - Most likely to appear as adjuncts to human-computer
interaction (HCI). Will offer assistance in specifiable tasks.

* Traveling (Internet) agents - Roving, mission-specific, with broad awareness and
interface potential. [Other than some disk access, most all web retrievals now run
entirely on the user machine. Where information gathering processes run is
ultimately a matter of money and risk.]

* Multiple Collaborating Agents - Multiple agents with some common goals, of
varying sophistication; may be physically or logically separated.

Another, and perhaps more general way to describe intelligent agents is by their degree of
intelligence. Discussing the amount of intelligence in anything carries both difficulty and
controversy. If agents are an inevitable direction in software development, we must have a way
to discuss them. Here are three types of intelligent agents:

* Directed-Action Agents - Has fixed goals but can react to the data and the
environment it encounters as long as they have been explicitly anticipated. Little
reasoning ability except for self recovery. Might be termed a “do-this” agent.

* Reasoned-Action Agents - Has fixed goals and is able to monitor other objects
(data and processes). It can reason about what it encounters and take alternative
action. Being able to reason implies that it has both a knowledge base (data and
rules) and some processes to use. Might be termed an “achieve-this” agent.

* Learned-Action Agents - Has the above capabilities plus it can accept more general
goals and is capable of altering or adding to them under guidelines. Has broad
awareness of its environment, the data it encounters, and, importantly, itself. Might
be termed an “accept-this” agent.

Whether or not software agents will catch on indegelopment community in great
measure determined by the underlying models on which they are constructed. Attributing
intelligence to agents means they will likely be built on the foundations of Al. Agent models are
often based on concepts such as perception/action, belief/desire/intent, expert systems, game
theoretic, and others. Al programs are widely embedded in existing software and Al will continue
to provide the foundations for new capabilities. The technology of distributed computing will
also be a necessary component. Both are needed over the long term. (See Artificial Intelligence,
Chapter 7.)

Lastly, agents will become so much a part of the HCI that it will be difficult to separate the
two fields. Agents will almost certainly play a role in the next step in HCI as applications
programs give way to a more integrated, task-oriented type of computer-based work. Another
obvious need for agents, however, will be in powerful but ultra-portable computers (e.g., PDAS)
where the more traditional input/output modalities such as keyboards are not available.

5.4 Realizations in Software Agents Within 10 Years

Over the next decade all of the above types of agents will be introduced and in common
use at some level of sophistication. The rapid growth of the Internet may draw the most atten-
tion and thus théraveling agentmay get broadly developed first. Agents that do appreciable

40



remote execution will be the most difficult to “host” or “serve”. The term itself suggests a
warning to some but the acceptance of someone else’s code in your machine is already widely
practiced under not-so-pointed terminology. WWW home pages, for example, are executable
codes that the user invites in now. This is clearly an issue of security and therefore the initiative
towards encryption and other solutions now underway on the Internet will continue with
emphasis if business is to thrive there.

User or system assessment and characterization by athésbry agenin a carefully
circumscribed domain will be available. A good example of an advisory agent is its use in an
instructional setting. Here an agent will start with a basic set of instructional goals, add an
ability to monitor where the student is in relation to those goals, and then set the course of
instruction issuing feedback, including recommendations, along the way. A natural evolution in
the sophistication of situation assessment and how it is presented will make the agent appear
more intelligent and interactive.

Thepersonal assistaragentwill hit the marketplace in 1996 with Apple’s new operating
system. These agents will assist the user in specifiable tasks such as electronic mail, calendars,
conferencing set-up, object search, and so on. These agents, unlike the simple macro-recording
agents of HP’s New Wave, are reputed to have some ability to reason about what they are
“seeing” and to act according to some prescribed user guidelines.

An important question concerning multiglellaborating agentss the level of complexity
of a given agent. It is doubtful that small elemental agents can aggregate into something powerful
or “intelligent.” So, the question is what should the atomic level of an agent be such that its
contribution can aggregate toward coherent, integrated behavior? That is undoubtedly task and
situation dependent, but to date there has been no unexpected or superior behavior from such
aggregations. One level of agent granularity is shown in SRI's Open Agent Architecture depicted
in Figure 5.

Facilitator

User ’\':' ﬂ:% =
Interface e Cl
Agents Electronic G
Speech 4 ﬁ
Recognition Mail Agent Database

Agent GERID
Agent ” -~ Telephone
Eu & Agent

\q)))))) Notify Ll

Natural Agent )17

=y Language Calendar
. Agent Agent Text To
i)
= G, Agent
Open Agent Architecture SRl International

Figure 5 SRI's Open Agent Architecture

41



One area of development that could accelerate the use of agents in a wide range of settings
is agent language; that is, a common agent language or environment containing user-agent,
agent-agent, and agent-host (server) interaction. Several procedural, interpretive, and declara-
tive (e.g., ACL/KIF/KQML) languages are already in use in new companies or in universities.
Reducing agent functionality to a simple common form should, as in the reasons related to
object-oriented software, simplify language and interactions and at the same time make trusted
interaction more likely. Network-based operating systems that provide a homogeneous docking
interface may also act to protect both host and agent. Common, public rules for agents that
promote desirable inter-agent and host-agent behavior will be forthcoming. Scripting languages
having just this purpose are now in use.

Regarding the underpinnings or catalysts to the growth of agents, several areas are worth
noting. These will be expressed in human-like attributes even though the capabilities will be far
from human. This illustrates the strong need for commonly accepted terms to describe agent
attributes. Some agent properties:

* \eracity - Some availability of trust through tightly scripted interface language
and cryptographic authentication.

* Competence - Some capacity for accurate observation and interpretation, limited
by cost, to construct, maintain, and operate agents.

* Persistence - Recovery using some form of reasoning.

* Security and Safety - Some assurance through host constraints and agent veracity
measures above. But two strategies will have to be avoided: 1) broad or intricate
activities carried on by an agent in a host machine and 2) any true universal
solution not supported by cryptography. [A worthy attribute: An agent’s design is
made such that its behavior from a host’s perspective gets rewarded when it
conforms exactly to its advertised purpose and punished, perhaps annihilated,
when it does not.]

* Autonomy - In traveling agents, some “en route” decisions using reasoning.
Autonomy is largely the province of the reasoning and learning agents; that is,
being able to assess the situation and take alternative action and, in the latter case,
remembering to avoid it next time.

Some applications of software agents are under development or test and illustrate the
directions future design will take:

* Open Agent Architecture - Implements multimodal, distributed HCI (SRI)
* OASIS - An air traffic control system under test in Australia (AAIl)
* FLiPSIDE - A “blackboard system” for agent interaction (Stanford)

* Telescript - A proprietary, commercial, general purpose scripting language
(General Magic)

* SmalltalkAgents - A scripting language based on Smalltalk (Quasar)

42



* Tool Command Language (Tcl) - High-level, hypercard-like, machine-indepen-
dent scripting language (public domain)

» Safe-Tcl - Secure version of Tcl (First Virtual).

5.5 Realizations in Software Agents Within 20 Years

The following projections are evolutionary, not revolutionary, and they begin with an
assumption that the Internet will lead, directly or indirectly, to a global electronic information
and commercial infrastructure. That infrastructure will be a consistent, universal, and pluralistic
system. It will permit your personal or corporate computing environment, not necessarily local,
to transparently represent you in a wide variety of transactions such as educational or learning
systems, commerce (buying and selling), conferencing, scheduling, entertainment, mail, and
much more. If such an infrastructure is not forthcoming, it will be for organizational and not
technical reasons.

More about agent attributes:

* \eracity - Will be guaranteed through at least one of several methods: one-time
authentication from a trusted third party plus checksumming; task execution or
memory constraints in hosts; agent (of arbitrary complexity) surrounded by a simple
shell written in script of constrained functionality; creation of very isolated
environments in the host.

* Competence - Specified abilities to gain closure, accuracy.

* Autonomy - Specified circumscription but still wide latitude on agency and
ability to negotiate or have volition. Agent-agent negotiations will occur under
relatively simple, user-defined, and legal guidelines. Context will likely be
buying and selling simple products rather than contracts in which both costs and
benefits are more ambiguous.

* Delegation - The ability to receive abstract, human-language commands and carry
them out in ways transparent to requester. It is not necessary to think of an agent
as yours, as a single module, or as local. But roving, rogue, ownerless agents are
an act of information warfare even if they have no malicious intent. Agents must
always be responsible to some user!

5.6 Untethered Realizations in Software Agents

While twenty years seems an eternity in the computing world, there is one portrayal of the
future of agents and HCI that has no time limit, only direction. This direction is from the present
hands- and eyes-intensive machine toward a more amorphous system that might be called a
delegatable assistant. These properties will emerge:

* Entire computers will become delegatable agents with natural language capabilities
(See Human-Computer Interaction, Chapter 4.0)

* Trusted interactions will occur between users and hosts via their agents.

43



* Collaboration will occur among task or knowledge specific autonomous agents to
achieve an integrated goal.

The notion of agents as delegatable software will occur as part of the evolutionary main-
stream of computer development. Human-computer interactions will be done dominantly in
human language terms much in the manner of requests or delegations. Keyboards will survive
for text-intensive input.

44



